MathNet.Numerics.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
3
NPOI
.NET port of Apache POI
8
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
8
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
10
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
11
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
20
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
23
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
29

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 15 11/30/2023
5.0.0-beta02 10 03/20/2024
5.0.0-beta01 11 03/19/2024
5.0.0-alpha16 12 03/21/2024
5.0.0-alpha15 11 03/21/2024
5.0.0-alpha14 14 03/21/2024
5.0.0-alpha11 11 03/21/2024
5.0.0-alpha10 14 03/20/2024
5.0.0-alpha09 11 03/21/2024
5.0.0-alpha08 11 03/21/2024
5.0.0-alpha07 12 03/20/2024
5.0.0-alpha06 12 03/21/2024
5.0.0-alpha05 13 03/21/2024
5.0.0-alpha04 12 03/01/2024
5.0.0-alpha03 11 03/21/2024
5.0.0-alpha02 13 03/21/2024
5.0.0-alpha01 11 03/18/2024
4.15.0 32 08/18/2023
4.14.0 12 01/25/2024
4.13.0 8 03/19/2024
4.12.0 12 03/18/2024
4.11.0 11 03/18/2024
4.10.0 10 03/20/2024
4.9.1 13 03/20/2024
4.9.0 14 03/02/2024
4.8.1 12 03/18/2024
4.8.0 13 03/03/2024
4.8.0-beta02 11 03/21/2024
4.8.0-beta01 10 03/21/2024
4.7.0 13 03/18/2024
4.6.0 12 03/01/2024
4.5.0 13 03/02/2024
4.4.1 14 03/17/2024
3.20.2 11 03/04/2024
3.20.1 11 03/19/2024
3.20.0 11 03/20/2024
3.20.0-beta01 11 03/21/2024
3.19.0 12 03/04/2024
3.18.0 12 03/04/2024
3.17.0 11 03/04/2024
3.16.0 12 03/01/2024
3.15.0 11 03/02/2024
3.14.0-beta03 10 03/20/2024
3.14.0-beta02 10 03/19/2024
3.14.0-beta01 10 03/18/2024
3.13.1 13 03/02/2024
3.13.0 11 03/16/2024
3.12.0 12 03/14/2024
3.11.1 11 03/16/2024
3.11.0 12 03/14/2024
3.10.0 11 03/18/2024
3.9.0 12 03/02/2024
3.8.0 13 03/02/2024
3.7.1 12 03/01/2024
3.7.0 14 03/17/2024
3.6.0 12 03/01/2024
3.5.0 13 03/01/2024
3.4.0 13 03/03/2024
3.3.0 13 03/01/2024
3.3.0-beta2 10 03/18/2024
3.3.0-beta1 9 03/18/2024
3.2.3 13 03/02/2024
3.2.2 13 03/01/2024
3.2.1 13 03/01/2024
3.2.0 15 03/01/2024
3.1.0 13 12/12/2023
3.0.2 12 01/08/2024
3.0.1 14 03/03/2024
3.0.0 13 12/14/2023
3.0.0-beta05 9 03/18/2024
3.0.0-beta04 10 03/18/2024
3.0.0-beta03 11 03/05/2024
3.0.0-beta02 10 03/19/2024
3.0.0-beta01 12 03/17/2024
3.0.0-alpha9 11 03/17/2024
3.0.0-alpha8 11 03/17/2024
3.0.0-alpha7 11 03/18/2024
3.0.0-alpha6 13 03/17/2024
3.0.0-alpha5 10 03/18/2024
2.6.1 12 03/01/2024
2.6.0 14 12/18/2023
2.5.0 14 03/01/2024
2.4.0 13 03/04/2024
2.3.0 16 03/01/2024
2.2.1 12 03/19/2024