MathNet.Numerics.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
12
NPOI
.NET port of Apache POI
14
NPOI
.NET port of Apache POI
18
NPOI
.NET port of Apache POI
22
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
19
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
21
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
22
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
33
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
34
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
41

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 25 11/30/2023
5.0.0-beta02 16 03/20/2024
5.0.0-beta01 17 03/19/2024
5.0.0-alpha16 18 03/21/2024
5.0.0-alpha15 17 03/21/2024
5.0.0-alpha14 20 03/21/2024
5.0.0-alpha11 18 03/21/2024
5.0.0-alpha10 20 03/20/2024
5.0.0-alpha09 16 03/21/2024
5.0.0-alpha08 15 03/21/2024
5.0.0-alpha07 19 03/20/2024
5.0.0-alpha06 18 03/21/2024
5.0.0-alpha05 19 03/21/2024
5.0.0-alpha04 17 03/01/2024
5.0.0-alpha03 17 03/21/2024
5.0.0-alpha02 19 03/21/2024
5.0.0-alpha01 17 03/18/2024
4.15.0 40 08/18/2023
4.14.0 18 01/25/2024
4.13.0 13 03/19/2024
4.12.0 20 03/18/2024
4.11.0 17 03/18/2024
4.10.0 17 03/20/2024
4.9.1 22 03/20/2024
4.9.0 25 03/02/2024
4.8.1 21 03/18/2024
4.8.0 23 03/03/2024
4.8.0-beta02 17 03/21/2024
4.8.0-beta01 16 03/21/2024
4.7.0 23 03/18/2024
4.6.0 21 03/01/2024
4.5.0 25 03/02/2024
4.4.1 25 03/17/2024
3.20.2 17 03/04/2024
3.20.1 17 03/19/2024
3.20.0 17 03/20/2024
3.20.0-beta01 17 03/21/2024
3.19.0 17 03/04/2024
3.18.0 17 03/04/2024
3.17.0 16 03/04/2024
3.16.0 17 03/01/2024
3.15.0 16 03/02/2024
3.14.0-beta03 18 03/20/2024
3.14.0-beta02 19 03/19/2024
3.14.0-beta01 16 03/18/2024
3.13.1 19 03/02/2024
3.13.0 18 03/16/2024
3.12.0 18 03/14/2024
3.11.1 16 03/16/2024
3.11.0 18 03/14/2024
3.10.0 16 03/18/2024
3.9.0 21 03/02/2024
3.8.0 25 03/02/2024
3.7.1 21 03/01/2024
3.7.0 24 03/17/2024
3.6.0 21 03/01/2024
3.5.0 22 03/01/2024
3.4.0 22 03/03/2024
3.3.0 22 03/01/2024
3.3.0-beta2 18 03/18/2024
3.3.0-beta1 16 03/18/2024
3.2.3 22 03/02/2024
3.2.2 22 03/01/2024
3.2.1 22 03/01/2024
3.2.0 27 03/01/2024
3.1.0 26 12/12/2023
3.0.2 24 01/08/2024
3.0.1 23 03/03/2024
3.0.0 21 12/14/2023
3.0.0-beta05 15 03/18/2024
3.0.0-beta04 17 03/18/2024
3.0.0-beta03 19 03/05/2024
3.0.0-beta02 16 03/19/2024
3.0.0-beta01 17 03/17/2024
3.0.0-alpha9 17 03/17/2024
3.0.0-alpha8 16 03/17/2024
3.0.0-alpha7 18 03/18/2024
3.0.0-alpha6 18 03/17/2024
3.0.0-alpha5 15 03/18/2024
2.6.1 21 03/01/2024
2.6.0 25 12/18/2023
2.5.0 23 03/01/2024
2.4.0 22 03/04/2024
2.3.0 28 03/01/2024
2.2.1 21 03/19/2024