MathNet.Numerics.Signed 3.11.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
1
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
3
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
4
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
10
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
12
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
16

Special Functions: error functions to use static coefficient arrays (perf) ~Joel Sleppy Integration: Gauss-Legendre Rule (1D, 2D) ~Larz White Complex: more robust magnitude and division for numbers close to MaxValue or Epsilon ~MaLiN2223 Native Providers: lazy default provider discovery & initialization ~Kuan Bartel FSharp Package: Quaternion type ~Phil Cleveland

This package has no dependencies.

Version Downloads Last updated
5.0.0 5 11/30/2023
5.0.0-beta02 2 03/20/2024
5.0.0-beta01 1 03/19/2024
5.0.0-alpha16 2 03/21/2024
5.0.0-alpha15 2 03/21/2024
5.0.0-alpha14 1 03/21/2024
5.0.0-alpha11 2 03/21/2024
5.0.0-alpha10 3 03/20/2024
5.0.0-alpha09 2 03/21/2024
5.0.0-alpha08 2 03/21/2024
5.0.0-alpha07 2 03/20/2024
5.0.0-alpha06 2 03/21/2024
5.0.0-alpha05 1 03/21/2024
5.0.0-alpha04 4 03/01/2024
5.0.0-alpha03 2 03/21/2024
5.0.0-alpha02 2 03/21/2024
5.0.0-alpha01 1 03/18/2024
4.15.0 18 08/18/2023
4.14.0 3 01/25/2024
4.13.0 2 03/19/2024
4.12.0 3 03/18/2024
4.11.0 1 03/18/2024
4.10.0 1 03/20/2024
4.9.1 3 03/20/2024
4.9.0 4 03/02/2024
4.8.1 2 03/18/2024
4.8.0 3 03/03/2024
4.8.0-beta02 1 03/21/2024
4.8.0-beta01 1 03/21/2024
4.7.0 2 03/18/2024
4.6.0 3 03/01/2024
4.5.0 3 03/02/2024
4.4.1 2 03/17/2024
3.20.2 3 03/04/2024
3.20.1 2 03/19/2024
3.20.0 2 03/20/2024
3.20.0-beta01 2 03/21/2024
3.19.0 3 03/04/2024
3.18.0 3 03/04/2024
3.17.0 4 03/04/2024
3.16.0 4 03/01/2024
3.15.0 3 03/02/2024
3.14.0-beta03 2 03/20/2024
3.14.0-beta02 3 03/19/2024
3.14.0-beta01 1 03/18/2024
3.13.1 4 03/02/2024
3.13.0 2 03/16/2024
3.12.0 1 03/14/2024
3.11.1 1 03/16/2024
3.11.0 2 03/14/2024
3.10.0 2 03/18/2024
3.9.0 3 03/02/2024
3.8.0 3 03/02/2024
3.7.1 3 03/01/2024
3.7.0 2 03/17/2024
3.6.0 3 03/01/2024
3.5.0 3 03/01/2024
3.4.0 4 03/03/2024
3.3.0 4 03/01/2024
3.3.0-beta2 2 03/18/2024
3.3.0-beta1 1 03/18/2024
3.2.3 4 03/02/2024
3.2.2 3 03/01/2024
3.2.1 3 03/01/2024
3.2.0 3 03/01/2024
3.1.0 3 12/12/2023
3.0.2 2 01/08/2024
3.0.1 3 03/03/2024
3.0.0 3 12/14/2023
3.0.0-beta05 2 03/18/2024
3.0.0-beta04 3 03/18/2024
3.0.0-beta03 3 03/05/2024
3.0.0-beta02 2 03/19/2024
3.0.0-beta01 2 03/17/2024
3.0.0-alpha9 2 03/17/2024
3.0.0-alpha8 3 03/17/2024
3.0.0-alpha7 2 03/18/2024
3.0.0-alpha6 3 03/17/2024
3.0.0-alpha5 2 03/18/2024
2.6.1 4 03/01/2024
2.6.0 3 12/18/2023
2.5.0 4 03/01/2024
2.4.0 3 03/04/2024
2.3.0 3 03/01/2024
2.2.1 2 03/19/2024