MathNet.Numerics.Signed 3.12.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
1
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
3
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
4
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
10
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
12
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
16

ODE Solver: Runge-Kutta (order 2, 4) and Adams-Bashforth (order 1-4) algorithms ~Yoonku Hwang Linear Algebra: faster multiplication of sparse with dense matrices ~Arthur BUG: Integration: Gauss-Legendre on order 256 ~Sergey Kosukhin BUG: Distributions: ChiSquared sampling was taking a square root where it should not ~Florian Wechsung

This package has no dependencies.

Version Downloads Last updated
5.0.0 5 11/30/2023
5.0.0-beta02 2 03/20/2024
5.0.0-beta01 1 03/19/2024
5.0.0-alpha16 2 03/21/2024
5.0.0-alpha15 2 03/21/2024
5.0.0-alpha14 1 03/21/2024
5.0.0-alpha11 2 03/21/2024
5.0.0-alpha10 3 03/20/2024
5.0.0-alpha09 2 03/21/2024
5.0.0-alpha08 2 03/21/2024
5.0.0-alpha07 2 03/20/2024
5.0.0-alpha06 2 03/21/2024
5.0.0-alpha05 1 03/21/2024
5.0.0-alpha04 4 03/01/2024
5.0.0-alpha03 2 03/21/2024
5.0.0-alpha02 2 03/21/2024
5.0.0-alpha01 1 03/18/2024
4.15.0 18 08/18/2023
4.14.0 3 01/25/2024
4.13.0 2 03/19/2024
4.12.0 3 03/18/2024
4.11.0 1 03/18/2024
4.10.0 1 03/20/2024
4.9.1 3 03/20/2024
4.9.0 4 03/02/2024
4.8.1 2 03/18/2024
4.8.0 3 03/03/2024
4.8.0-beta02 1 03/21/2024
4.8.0-beta01 1 03/21/2024
4.7.0 2 03/18/2024
4.6.0 3 03/01/2024
4.5.0 3 03/02/2024
4.4.1 2 03/17/2024
3.20.2 3 03/04/2024
3.20.1 2 03/19/2024
3.20.0 2 03/20/2024
3.20.0-beta01 2 03/21/2024
3.19.0 3 03/04/2024
3.18.0 3 03/04/2024
3.17.0 4 03/04/2024
3.16.0 4 03/01/2024
3.15.0 3 03/02/2024
3.14.0-beta03 2 03/20/2024
3.14.0-beta02 3 03/19/2024
3.14.0-beta01 1 03/18/2024
3.13.1 4 03/02/2024
3.13.0 2 03/16/2024
3.12.0 1 03/14/2024
3.11.1 1 03/16/2024
3.11.0 2 03/14/2024
3.10.0 2 03/18/2024
3.9.0 3 03/02/2024
3.8.0 3 03/02/2024
3.7.1 3 03/01/2024
3.7.0 2 03/17/2024
3.6.0 3 03/01/2024
3.5.0 3 03/01/2024
3.4.0 4 03/03/2024
3.3.0 4 03/01/2024
3.3.0-beta2 2 03/18/2024
3.3.0-beta1 1 03/18/2024
3.2.3 4 03/02/2024
3.2.2 3 03/01/2024
3.2.1 3 03/01/2024
3.2.0 3 03/01/2024
3.1.0 3 12/12/2023
3.0.2 2 01/08/2024
3.0.1 3 03/03/2024
3.0.0 3 12/14/2023
3.0.0-beta05 2 03/18/2024
3.0.0-beta04 3 03/18/2024
3.0.0-beta03 3 03/05/2024
3.0.0-beta02 2 03/19/2024
3.0.0-beta01 2 03/17/2024
3.0.0-alpha9 2 03/17/2024
3.0.0-alpha8 3 03/17/2024
3.0.0-alpha7 2 03/18/2024
3.0.0-alpha6 3 03/17/2024
3.0.0-alpha5 2 03/18/2024
2.6.1 4 03/01/2024
2.6.0 3 12/18/2023
2.5.0 4 03/01/2024
2.4.0 3 03/04/2024
2.3.0 3 03/01/2024
2.2.1 2 03/19/2024