MathNet.Numerics.Signed 3.0.0-beta04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
7
NPOI
.NET port of Apache POI
9
NPOI
.NET port of Apache POI
14
NPOI
.NET port of Apache POI
16
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
14
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
16
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
17
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
27
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
29
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
34

Candidate for v3.0 Release Linear Algebra: FoldRows renamed to FoldByRow, now operates on and returns arrays; same for columns New FoldRows and ReduceRows that operate on row vectors; same for columns Split Map into Map and MapConvert (allows optimization in common in-place case) Row and columns sums and absolute-sums F# DiagonalMatrix module to create diagonal matrices without using the builder F# Matrix module extended with sumRows, sumAbsRows, normRows; same for columns Build: extend build and release automation, automatic releases also for data extensions and native providers

This package has no dependencies.

Version Downloads Last updated
5.0.0 20 11/30/2023
5.0.0-beta02 13 03/20/2024
5.0.0-beta01 14 03/19/2024
5.0.0-alpha16 15 03/21/2024
5.0.0-alpha15 14 03/21/2024
5.0.0-alpha14 17 03/21/2024
5.0.0-alpha11 15 03/21/2024
5.0.0-alpha10 18 03/20/2024
5.0.0-alpha09 14 03/21/2024
5.0.0-alpha08 13 03/21/2024
5.0.0-alpha07 17 03/20/2024
5.0.0-alpha06 15 03/21/2024
5.0.0-alpha05 17 03/21/2024
5.0.0-alpha04 15 03/01/2024
5.0.0-alpha03 15 03/21/2024
5.0.0-alpha02 17 03/21/2024
5.0.0-alpha01 15 03/18/2024
4.15.0 37 08/18/2023
4.14.0 15 01/25/2024
4.13.0 11 03/19/2024
4.12.0 17 03/18/2024
4.11.0 14 03/18/2024
4.10.0 14 03/20/2024
4.9.1 18 03/20/2024
4.9.0 21 03/02/2024
4.8.1 17 03/18/2024
4.8.0 18 03/03/2024
4.8.0-beta02 14 03/21/2024
4.8.0-beta01 13 03/21/2024
4.7.0 19 03/18/2024
4.6.0 17 03/01/2024
4.5.0 21 03/02/2024
4.4.1 21 03/17/2024
3.20.2 14 03/04/2024
3.20.1 14 03/19/2024
3.20.0 14 03/20/2024
3.20.0-beta01 14 03/21/2024
3.19.0 15 03/04/2024
3.18.0 15 03/04/2024
3.17.0 14 03/04/2024
3.16.0 15 03/01/2024
3.15.0 14 03/02/2024
3.14.0-beta03 13 03/20/2024
3.14.0-beta02 16 03/19/2024
3.14.0-beta01 13 03/18/2024
3.13.1 16 03/02/2024
3.13.0 14 03/16/2024
3.12.0 15 03/14/2024
3.11.1 13 03/16/2024
3.11.0 15 03/14/2024
3.10.0 13 03/18/2024
3.9.0 17 03/02/2024
3.8.0 20 03/02/2024
3.7.1 16 03/01/2024
3.7.0 19 03/17/2024
3.6.0 17 03/01/2024
3.5.0 18 03/01/2024
3.4.0 18 03/03/2024
3.3.0 17 03/01/2024
3.3.0-beta2 14 03/18/2024
3.3.0-beta1 12 03/18/2024
3.2.3 18 03/02/2024
3.2.2 18 03/01/2024
3.2.1 18 03/01/2024
3.2.0 21 03/01/2024
3.1.0 21 12/12/2023
3.0.2 18 01/08/2024
3.0.1 19 03/03/2024
3.0.0 17 12/14/2023
3.0.0-beta05 12 03/18/2024
3.0.0-beta04 13 03/18/2024
3.0.0-beta03 14 03/05/2024
3.0.0-beta02 13 03/19/2024
3.0.0-beta01 15 03/17/2024
3.0.0-alpha9 15 03/17/2024
3.0.0-alpha8 14 03/17/2024
3.0.0-alpha7 15 03/18/2024
3.0.0-alpha6 16 03/17/2024
3.0.0-alpha5 13 03/18/2024
2.6.1 17 03/01/2024
2.6.0 20 12/18/2023
2.5.0 19 03/01/2024
2.4.0 18 03/04/2024
2.3.0 22 03/01/2024
2.2.1 17 03/19/2024