MathNet.Numerics.Signed 3.0.0-beta04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
3
NPOI
.NET port of Apache POI
8
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
8
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
10
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
11
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
20
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
23
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
29

Candidate for v3.0 Release Linear Algebra: FoldRows renamed to FoldByRow, now operates on and returns arrays; same for columns New FoldRows and ReduceRows that operate on row vectors; same for columns Split Map into Map and MapConvert (allows optimization in common in-place case) Row and columns sums and absolute-sums F# DiagonalMatrix module to create diagonal matrices without using the builder F# Matrix module extended with sumRows, sumAbsRows, normRows; same for columns Build: extend build and release automation, automatic releases also for data extensions and native providers

This package has no dependencies.

Version Downloads Last updated
5.0.0 15 11/30/2023
5.0.0-beta02 10 03/20/2024
5.0.0-beta01 11 03/19/2024
5.0.0-alpha16 12 03/21/2024
5.0.0-alpha15 11 03/21/2024
5.0.0-alpha14 14 03/21/2024
5.0.0-alpha11 11 03/21/2024
5.0.0-alpha10 14 03/20/2024
5.0.0-alpha09 11 03/21/2024
5.0.0-alpha08 11 03/21/2024
5.0.0-alpha07 12 03/20/2024
5.0.0-alpha06 12 03/21/2024
5.0.0-alpha05 13 03/21/2024
5.0.0-alpha04 12 03/01/2024
5.0.0-alpha03 11 03/21/2024
5.0.0-alpha02 13 03/21/2024
5.0.0-alpha01 11 03/18/2024
4.15.0 32 08/18/2023
4.14.0 12 01/25/2024
4.13.0 8 03/19/2024
4.12.0 12 03/18/2024
4.11.0 11 03/18/2024
4.10.0 10 03/20/2024
4.9.1 13 03/20/2024
4.9.0 14 03/02/2024
4.8.1 12 03/18/2024
4.8.0 13 03/03/2024
4.8.0-beta02 11 03/21/2024
4.8.0-beta01 10 03/21/2024
4.7.0 13 03/18/2024
4.6.0 12 03/01/2024
4.5.0 13 03/02/2024
4.4.1 14 03/17/2024
3.20.2 11 03/04/2024
3.20.1 11 03/19/2024
3.20.0 11 03/20/2024
3.20.0-beta01 11 03/21/2024
3.19.0 12 03/04/2024
3.18.0 12 03/04/2024
3.17.0 11 03/04/2024
3.16.0 12 03/01/2024
3.15.0 11 03/02/2024
3.14.0-beta03 10 03/20/2024
3.14.0-beta02 10 03/19/2024
3.14.0-beta01 10 03/18/2024
3.13.1 13 03/02/2024
3.13.0 11 03/16/2024
3.12.0 12 03/14/2024
3.11.1 11 03/16/2024
3.11.0 12 03/14/2024
3.10.0 11 03/18/2024
3.9.0 12 03/02/2024
3.8.0 13 03/02/2024
3.7.1 12 03/01/2024
3.7.0 14 03/17/2024
3.6.0 12 03/01/2024
3.5.0 13 03/01/2024
3.4.0 13 03/03/2024
3.3.0 13 03/01/2024
3.3.0-beta2 10 03/18/2024
3.3.0-beta1 9 03/18/2024
3.2.3 13 03/02/2024
3.2.2 13 03/01/2024
3.2.1 13 03/01/2024
3.2.0 15 03/01/2024
3.1.0 13 12/12/2023
3.0.2 12 01/08/2024
3.0.1 14 03/03/2024
3.0.0 13 12/14/2023
3.0.0-beta05 9 03/18/2024
3.0.0-beta04 10 03/18/2024
3.0.0-beta03 11 03/05/2024
3.0.0-beta02 10 03/19/2024
3.0.0-beta01 12 03/17/2024
3.0.0-alpha9 11 03/17/2024
3.0.0-alpha8 11 03/17/2024
3.0.0-alpha7 11 03/18/2024
3.0.0-alpha6 13 03/17/2024
3.0.0-alpha5 10 03/18/2024
2.6.1 12 03/01/2024
2.6.0 14 12/18/2023
2.5.0 14 03/01/2024
2.4.0 13 03/04/2024
2.3.0 16 03/01/2024
2.2.1 12 03/19/2024