Microsoft.Extensions.AI.OpenAI 9.5.0-preview.1.25265.7

Microsoft.Extensions.AI.OpenAI

Provides an implementation of the IChatClient interface for the OpenAI package and OpenAI-compatible endpoints.

Install the package

From the command-line:

dotnet add package Microsoft.Extensions.AI.OpenAI

Or directly in the C# project file:

<ItemGroup>
  <PackageReference Include="Microsoft.Extensions.AI.OpenAI" Version="[CURRENTVERSION]" />
</ItemGroup>

Usage Examples

Chat

using Microsoft.Extensions.AI;

IChatClient client =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

Console.WriteLine(await client.GetResponseAsync("What is AI?"));

Chat + Conversation History

using Microsoft.Extensions.AI;

IChatClient client =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

Console.WriteLine(await client.GetResponseAsync(
[
    new ChatMessage(ChatRole.System, "You are a helpful AI assistant"),
    new ChatMessage(ChatRole.User, "What is AI?"),
]));

Chat streaming

using Microsoft.Extensions.AI;

IChatClient client =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

await foreach (var update in client.GetStreamingResponseAsync("What is AI?"))
{
    Console.Write(update);
}

Tool calling

using System.ComponentModel;
using Microsoft.Extensions.AI;

IChatClient openaiClient =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

IChatClient client = new ChatClientBuilder(openaiClient)
    .UseFunctionInvocation()
    .Build();

ChatOptions chatOptions = new()
{
    Tools = [AIFunctionFactory.Create(GetWeather)]
};

await foreach (var message in client.GetStreamingResponseAsync("Do I need an umbrella?", chatOptions))
{
    Console.Write(message);
}

[Description("Gets the weather")]
static string GetWeather() => Random.Shared.NextDouble() > 0.5 ? "It's sunny" : "It's raining";

Caching

using Microsoft.Extensions.AI;
using Microsoft.Extensions.Caching.Distributed;
using Microsoft.Extensions.Caching.Memory;
using Microsoft.Extensions.Options;

IDistributedCache cache = new MemoryDistributedCache(Options.Create(new MemoryDistributedCacheOptions()));

IChatClient openaiClient =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

IChatClient client = new ChatClientBuilder(openaiClient)
    .UseDistributedCache(cache)
    .Build();

for (int i = 0; i < 3; i++)
{
    await foreach (var message in client.GetStreamingResponseAsync("In less than 100 words, what is AI?"))
    {
        Console.Write(message);
    }

    Console.WriteLine();
    Console.WriteLine();
}

Telemetry

using Microsoft.Extensions.AI;
using OpenTelemetry.Trace;

// Configure OpenTelemetry exporter
var sourceName = Guid.NewGuid().ToString();
var tracerProvider = OpenTelemetry.Sdk.CreateTracerProviderBuilder()
    .AddSource(sourceName)
    .AddConsoleExporter()
    .Build();

IChatClient openaiClient =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

IChatClient client = new ChatClientBuilder(openaiClient)
    .UseOpenTelemetry(sourceName: sourceName, configure: c => c.EnableSensitiveData = true)
    .Build();

Console.WriteLine(await client.GetResponseAsync("What is AI?"));

Telemetry, Caching, and Tool Calling

using System.ComponentModel;
using Microsoft.Extensions.AI;
using Microsoft.Extensions.Caching.Distributed;
using Microsoft.Extensions.Caching.Memory;
using Microsoft.Extensions.Options;
using OpenTelemetry.Trace;

// Configure telemetry
var sourceName = Guid.NewGuid().ToString();
var tracerProvider = OpenTelemetry.Sdk.CreateTracerProviderBuilder()
    .AddSource(sourceName)
    .AddConsoleExporter()
    .Build();

// Configure caching
IDistributedCache cache = new MemoryDistributedCache(Options.Create(new MemoryDistributedCacheOptions()));

// Configure tool calling
var chatOptions = new ChatOptions
{
    Tools = [AIFunctionFactory.Create(GetPersonAge)]
};

IChatClient openaiClient =
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIChatClient();

IChatClient client = new ChatClientBuilder(openaiClient)
    .UseDistributedCache(cache)
    .UseFunctionInvocation()
    .UseOpenTelemetry(sourceName: sourceName, configure: c => c.EnableSensitiveData = true)
    .Build();

for (int i = 0; i < 3; i++)
{
    Console.WriteLine(await client.GetResponseAsync("How much older is Alice than Bob?", chatOptions));
}

[Description("Gets the age of a person specified by name.")]
static int GetPersonAge(string personName) =>
    personName switch
    {
        "Alice" => 42,
        "Bob" => 35,
        _ => 26,
    };

Text embedding generation

using Microsoft.Extensions.AI;

IEmbeddingGenerator<string, Embedding<float>> generator =
    new OpenAI.Embeddings.EmbeddingClient("text-embedding-3-small", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIEmbeddingGenerator();

var embeddings = await generator.GenerateAsync("What is AI?");

Console.WriteLine(string.Join(", ", embeddings[0].Vector.ToArray()));

Text embedding generation with caching

using Microsoft.Extensions.AI;
using Microsoft.Extensions.Caching.Distributed;
using Microsoft.Extensions.Caching.Memory;
using Microsoft.Extensions.Options;

IDistributedCache cache = new MemoryDistributedCache(Options.Create(new MemoryDistributedCacheOptions()));

IEmbeddingGenerator<string, Embedding<float>> openAIGenerator =
    new OpenAI.Embeddings.EmbeddingClient("text-embedding-3-small", Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
    .AsIEmbeddingGenerator();

IEmbeddingGenerator<string, Embedding<float>> generator = new EmbeddingGeneratorBuilder<string, Embedding<float>>(openAIGenerator)
    .UseDistributedCache(cache)
    .Build();

foreach (var prompt in new[] { "What is AI?", "What is .NET?", "What is AI?" })
{
    var embeddings = await generator.GenerateAsync(prompt);

    Console.WriteLine(string.Join(", ", embeddings[0].Vector.ToArray()));
}

Dependency Injection

using Microsoft.Extensions.AI;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;

// App Setup
var builder = Host.CreateApplicationBuilder();
builder.Services.AddDistributedMemoryCache();
builder.Services.AddLogging(b => b.AddConsole().SetMinimumLevel(LogLevel.Trace));

builder.Services.AddChatClient(services =>
    new OpenAI.Chat.ChatClient("gpt-4o-mini", Environment.GetEnvironmentVariable("OPENAI_API_KEY")).AsIChatClient())
    .UseDistributedCache()
    .UseLogging();

var app = builder.Build();

// Elsewhere in the app
var chatClient = app.Services.GetRequiredService<IChatClient>();
Console.WriteLine(await chatClient.GetResponseAsync("What is AI?"));

Minimal Web API

using Microsoft.Extensions.AI;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddChatClient(services =>
    new OpenAI.Chat.ChatClient("gpt-4o-mini", builder.Configuration["OPENAI_API_KEY"]).AsIChatClient());

builder.Services.AddEmbeddingGenerator(services =>
    new OpenAI.Embeddings.EmbeddingClient("text-embedding-3-small", builder.Configuration["OPENAI_API_KEY"]).AsIEmbeddingGenerator());

var app = builder.Build();

app.MapPost("/chat", async (IChatClient client, string message) =>
{
    var response = await client.GetResponseAsync(message);
    return response.Message;
});

app.MapPost("/embedding", async (IEmbeddingGenerator<string, Embedding<float>> client, string message) =>
{
    var response = await client.GenerateAsync(message);
    return response[0].Vector;
});

app.Run();

Documentation

Learn how to create a conversational .NET console chat app using an OpenAI or Azure OpenAI model with the Quickstart - Build an AI chat app with .NET documentation.

Feedback & Contributing

We welcome feedback and contributions in our GitHub repo.

Showing the top 20 packages that depend on Microsoft.Extensions.AI.OpenAI.

Packages Downloads
Microsoft.SemanticKernel.Connectors.OpenAI
Semantic Kernel connectors for OpenAI. Contains clients for chat completion, embedding and DALL-E text to image.
1

.NET Framework 4.6.2

.NET Standard 2.0

.NET 9.0

.NET 8.0

Version Downloads Last updated
9.5.0-preview.1.25265.7 1 05/31/2025
9.5.0-preview.1.25262.9 0 05/13/2025
9.4.4-preview.1.25259.16 0 05/10/2025
9.4.3-preview.1.25230.7 0 05/01/2025
9.4.0-preview.1.25207.5 0 04/08/2025
9.3.0-preview.1.25161.3 0 03/11/2025
9.3.0-preview.1.25114.11 0 02/16/2025
9.1.0-preview.1.25064.3 0 01/14/2025
9.0.1-preview.1.24570.5 0 11/21/2024
9.0.0-preview.9.24556.5 0 11/12/2024
9.0.0-preview.9.24525.1 0 10/26/2024
9.0.0-preview.9.24507.7 0 10/08/2024